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Abstract. A material surface of pure constituents with a flexible molecular chain (amphiphilics) is con-
sidered; thermodynamic behaviour is studied in the chain length–temperature plane. The Hamiltonian of
the system is modelled as the sum of a formation term which refers to the polymer nature of the chain,
and of a fluctuation term with a specific elastic form. For closed systems the model exhibits phases with
uniform curvature and conformational order/disorder or, alternatively, modulated phases; a critical chain
length is found for the existence of modulated phases; the dependence of transition temperature on energy
parameters is determined. A critical region is found for open systems, where conformational disorder drives
spontaneous generation of curvature; this lies above a characteristic chain length and around the shape
transition temperature.

PACS. 64.60.-i General studies of phase transitions – 68.35.Rh Phase transitions and critical phenomena
– 87.22.-q Physics of cellular and physiological processes

1 Introduction

In order to study the role of chain flexibility in phase
transitions of material surfaces (amphiphilic monolayers–
membrane bilayers) [1–7], a model for a surface formed
by molecules with a flexible part is presented. The main
innovation in the model is that phenomenological parame-
ters, which describe the self assembling of constituents and
fluctuations of the surface shape, obtain a proper source
in the conformational behaviour of the flexible chain in
the molecule.

Particular attention is paid to the study of shape fluc-
tuations in material surfaces [8–16]. In general, pertur-
bations of surface behaviour are represented by a field
phenomenologically coupled with elastic variables. For ex-
ample, in Leibler’s work [9], the concentration of host
molecules in the layer (proteins, drugs) is represented as
a scalar field, coupled to local curvature. For lipid mem-
branes, MacKintosh et al. [14,15] define a coupling be-
tween tangent plane order (vectorial field) and sponta-
neous curvature in membranes. In the model by Honda
and Kimura [13], chain configurations are considered when
explaining the mechanical origin of the ripple phase. The
influence of the degree of chain unsaturation on the pack-
ing behaviour of constituents is also pointed out in a dif-
ferent context [16]. In all these papers there is a strong
dependence of the surface geometry on the given order
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of the surface or its constituents. In the present work,
the thermodynamic behaviour of a pure surface (without
structural or chemical defects) is studied by parametriz-
ing the equilibrium geometry and couplings in the elastic
energy through functions of local conformations.

In Section 2, the Hamiltonian of the model is written.
A partition of the set of Flory states for the free molecular
chain [17] is obtained by defining conformational classes,
corresponding to assigned steric properties of the chain.
The origin of a significant interaction between conforma-
tional and surface degrees of freedom is recognized in the
multiplicity of conformations which belong to each class.
The peculiarity of the model is that all the parameters
which appear in the description of the surface as an elas-
tic continuum, are functions of conformational classes in-
stead of Flory states. After class partition, the summa-
tion over elastic degrees of freedom, or, alternatively, the
summation over the conformational ones, generates either
spin-like or Helfrich-like [18] effective Hamiltonians. Cou-
pling constants show non–trivial dependence on the T = 0
chain length and, on the other hand, depend on tempera-
ture; as a consequence, by varying chain length the model
explores regions with different criticalities of known phase
diagrams.

As a special case, a partition in two classes is considered
in the paper; this is referred to as a two–level model. The
classes are, in general, defined when giving geometrical pa-
rameters and interaction couplings. An extension from two
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to more levels is technically feasible [19,20] and does not
require further theoretical efforts. From a physical point
of view, the choice between a two – three – (or more) level
description is suggested by the number of phases coexist-
ing in the system.

In Section 3, closed systems are considered (the num-
ber of constituents is fixed). After integration over the
elastic degrees of freedom, the effective Hamiltonian of the
model defines either an Ising model with an external field
or a Brazovskii model [21], depending on the T = 0 chain
length. In these models, conformational classes are spins.
Each chain length generates a physical line in the stan-
dard phase diagram. In the first case, the Ising transition
(first order or main transition) appears if the chain length
is greater than a minimal value [22]. In the second case,
which applies to a different range of chain lengths, mod-
ulated phases exist only for chains that are long enough
(in agreement with Honda and Kimura [13]), otherwise
the system exhibits a first order phase transition between
phases with uniform curvature.

In Section 4, open systems are considered. The sum-
mation over conformational degrees of freedom results in
an elastic Hamiltonian which exhibits curvature instabil-
ity [23]; rippling phenomena are clearly associated with
the switching of conformational degrees of freedom. Two
cases are considered; firstly, systems are described (with a
large head–to–tail section ratio) in which surface rippling
is in competition with conformational disorder. A source
of tension is described which, at high temperatures, gener-
ates a positive tension against rippling formation. Such a
source is switched on by conformational disorder and it is
independent of chain length. In the second case (small ra-
tio) it is demonstrated that shape transition occurs with
chain lengths greater than a critical value; furthermore,
it is shown that the surface is unstable in a well–defined
region of the chain length–temperature plane.

2 The model

In this section, the dependence of surface parameters on
conformational variables is explicitly considered and the
structure of the surface Hamiltonian is described.
The amphiphile molecule is represented as a rigid core
(head), connected to a flexible part (tail) with the confor-
mational behaviour of a linear – not branched – chain. In
conformity with the Rotational Isomeric Model (RISM)
by Volkenstein and Flory [17,24] conformational states
{s} (sequences of Flory spins representing dihedral angles
in the chain) and associated energies {h(s)} are consid-
ered. A chain conformational variable ∆, meaning chain
transversal width, is defined. It is a non–local function
of Flory spins with intrinsic discrete character, due to the
discretized description of conformational defects in RISM.
One has ∆ = 0 for all–trans planar conformations. The
unitary width ∆ = 1 is assigned to one–kink conforma-
tions (straight chains formed by two trans–planar seg-
ments joined by one kink) and, then conformations with
∆ = 2, 3, · · · are considered. The essential feature of such
a variable is that each ∆ value identifies a class, often

large, of different Flory states; conformations with the
same width, but with distinct sequences of Flory spins and
energies, belong to the same ∆–class. For example, one has
∆ = 1 for all the conformations represented by sequences
of Flory spins containing subsequences {1, 0,−1} (the sin-
gle kink), separated by an even number of 0’s [25]. The
chain length selects a priori the set of available ∆–classes
for a given system.
The discrete character of∆ allows us to write the partition
function for the conformational statistics of a free chain
as the hierarchical sum over ∆–classes:

ZC = Z[0] + Z[1] + · · ·+ Z[∆] + · · · (1)

For small ∆ values the longitudinal axis of the chain is
maintained overall; in this case, the system belongs to the
weak disorder universality class. The following asymptotic
behaviour for large L (T = 0 chain length) is obtained
[25,26]:

Z[∆] ∼ exp(−Lu(β)) (2)

where the function u(β) is independent of L. In particular,
Z[1] can be easily computed either by the direct combina-
tory or by the transfer matrix method. The energy scale
for such calculations is fixed by the Flory values for the
{0, 1} sequence (0.4 kcal/mol), and for the {−1, 1} one
(2.2 kcal/mol).
In general works about amphiphilic layers, the geometric
features of the molecule are represented by the transversal
section of the molecule head (head size); such a quantity
plays a relevant role in determining packing geometry [5,
16,27–31]. Such a role is maintained here; moreover, in this
model the comparison between head size and tail transver-
sal width becomes a criterion for selection between differ-
ent kinds of couplings and constraints.

The general structure of the surface Hamiltonian will
now be defined.
The material surface is modelled as the result of a three–
step process.
The first step produces a frozen chain surface by pack-
ing together site–constituents with given conformations.
It is assumed that for each choice {∆(x)} regarding chain
classes (at x–site there is a molecule with a given, frozen
conformation of width ∆, represented by the class ∆(x)),
the packing process produces a unique frozen chain sur-
face.
Such surfaces are backgrounds for the second step of the
process; elastic fluctuations are considered when frozen
chain conformations are maintained.
The last step regards the onset of internal degrees of free-
dom; conformational disorder in flexible chains is switched
on.

For each configuration {∆(x)}, the formation energy
is the energy of the frozen chain surface. In a quite general
way, this energy is written as the sum of:

i) site contributions, namely the Flory energy hF(s(x))
required to realize the free–chain conformational state s ∈
∆(x) for any surface site;

ii) nearest neighbours’ contributions from interactions.
This term represents the packing energy of constituents.
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Chain-chain forces of the Lennard–Jones kind between
nearest neighbouring molecules are considered, and pack-
ing energy is assumed to depend on conformational classes
of involved chains (and not on conformational states).
The physical meaning of such an approximation is that
constituents of similar “shape” are favoured by packing
energy. Roughly speaking, the number of interactions be-
tween monomers of two adjacent chains with similar shapes
is higher than in the case in which different shapes allow
portions of chains to be uncoupled.
Note that, in this paper an even more drastic approxima-
tion will be adopted. Interaction energies will be grouped
into few levels; correspondingly, conformational classes are
partitioned into groups of classes. With respect to chain–
chain interactions, each element of such a partition repre-
sents a distinct chain “shape”.
Given these assumptions, after summing up Flory contri-
butions in terms of classes, the formation energy is writ-
ten as a spin Hamiltonian where conformational classes
(or groups of them) are the values of a spin S.

Fluctuations around frozen chain surfaces are consid-
ered as elastic deformations. For each background, the
normal gauge description of the fluctuating surface is
adopted [32]; configurations obtained by small, orthogonal
displacements f(x) from the background are considered.
The function f(x) gives the height of the centre of mass
of the site–constituent with reference to the background.
The limit of validity of this approximation is that only
fluctuating surfaces close to the background are described,
thus arbitrarily excluding large deformations.
Furthermore, the energy of the fluctuating surface de-
pends only on local displacements. Deformations at dis-
tant points are independent. Long–range correlations on
the surface are excluded. As discussed by David [32], lo-
cality is conserved in the normal gauge description.
The energy of elastic fluctuations is written in the form
generally used for fluid membranes (Helfrich Hamiltonian)

∆Hfluct =

∫
dA(f)

{1

2
κ(S(x), L)

×
[
c2(f)− 2c(f)co(S(x), L)

]
+ σ(S(x), L)

}
(3)

where κ, σ, co are elastic energy parameters which are func-
tions of the background.
In writing this expression, the peculiar features of the
model are explicitly inserted: bending rigidity κ, spon-
taneous curvature co and surface tension σ depend on the
background via site–classes and chain length L. Locality
is crucial in the model, since elastic energy density at site x
depends on the class S(x), but it is independent of classes
at different sites. No correlation between conformations
of molecules at different sites is considered in the fluctu-
ation energy; the formation term completely accounts for
all chain–chain correlations.

The total Hamiltonian is a function of both the fields
f(x) and S(x):

Htot(f(x), S(x))=Hform(S(x))+∆Hfluct(f(x), S(x)). (4)

In equation (3), it is required that surface vibrations are
coupled to chain conformations by means of elastic pa-
rameters (in particular c0). When flexibility of compo-
nents is switched on, different backgrounds, with distinct
patterns of frozen chain conformations, give rise to dif-
ferent descriptions of surface elasticity. The competition
between these descriptions is governed by the comparison
between the energetic cost of both forming and packing
distorted chains and the energy spent for elastic fluctu-
ations. The exchange of energy between conformational
and elastic modes becomes effective in determining the
configurational statistics of the surface.

The dependence of elastic parameters on site classes
and on chain length will now be discussed in detail.
• σ is the surface tension which, in a closed system

(see Sect. 3), controls the mean intermolecular distance.
In open systems (Sect. 4), such a term is the chemical
potential, associated with the number of constituents. In
both cases, it is assumed to be proportional to the energy
required to separate two rod–like molecules. With L–J in-
teractions, a linear dependence on L with 1/L corrections
is obtained; this is independent of conformations [33–38].
The relation σ(S(x), L) = σ0L is written.
• κ is the bending rigidity of the surface, which is re-

lated to the relative orientation of neighbouring molecules.
Considering again intermolecular forces, the energy re-
quired to increase the angle between two rod–like molecules
at distance l is expected to be proportional to (L/l)α,
where α = 3. This behaviour (which has been reported
by several authors within different contexts [3,27–30,33–
38]) is assumed to be independent of conformations or,
at most, if large values of ∆ are considered, we expect
2 < α < 3 (see also [8]). The relation κ(S(x), L) = κ0L

α

is written.
• co is the spontaneous curvature of the layer, which is

required to depend explicitly both on the site–class S(x)
and on the chain length; the following relation is written:

co(S(x), L) = γ0(S(x))L−χ (5)

where γ0 is a function of local spin and 0 ≤ χ ≤ 1. We
expect a weak dependence (χ ' 0) for small chain length
in comparison with head size.
Site dependence of curvature on spin is suggested by pre-
vious studies about packing of molecules with given shape.
For instance, Israelachvili [30] shows that surface curva-
ture of amphiphile aggregates is determined by the “criti-
cal packing shape” (cylinder, direct or inverse cone,
wedge, ...) of components. In particular, geometric or pack-
ing properties depend on a critical parameter which is a
function of the single component geometry (in our case,
the conformational class); the inverse proportionality co ∝
1/L is justified by scaling arguments.
Further reasons for chain length dependence of elastic pa-
rameters are derived from known results about layer width
and curvature in various chain–molecule systems. In the
present model the “width” of the surface is the mean (ef-
fective) length of distorted chains, which is proportional
to L. In particular, Leibler in reference [8] suggests inverse
proportionality between spontaneous curvature and layer
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width for fluid membranes and vesicles. For molecules
fixed to a surface (polymer brushes), the dependence 1/L
is again reported [38].

A simple realization of the present model will now be
presented.
In the following, reference will be made to a two–level
system, described by two ∆–classes with relevant physical
interest. The reason for this choice may be recognized in
classical spin models. Physical systems undergoing transi-
tions in which only two phases are in competition will be
considered; for each transition, only one order parameter
is involved, corresponding to one relevant spin combina-
tion.
In the present case, a two–level choice is realized by a bi–
partition of conformational classes, e.g. ∆ ≤ ∆ and ∆ >
∆, with ∆ fixed by the comparison between tail transver-
sal width and head size. Correspondingly, the summation
of the partition function gives Z(+) =

∑
∆≤∆ Z∆ and

Z(−) =
∑
∆>∆ Z∆. The model is then mapped into an

Ising model; S is the spin, with values S = −1 for ∆ ≤ ∆
and S = 1 for ∆ > ∆.
Regarding packing energy, in such a description, only three
chain–chain interaction parameters are required: V+,+ for
chains with S = +1; V+,− and V−,− with analogous mean-
ings. Since energy is lowered by similar shapes, the condi-
tion V−,− ≤ V+,+ < V+,− is assumed.
With n.n. L–J interactions, a chain length dependence
of energy parameters is expected. From previous studies
about packing of rod–like molecules, it is easy to show that
for straight chains V.,. ∝ L arctanL. Such a dependence
(linear on L with 1/L corrections) is actually independent
of chain conformation.
In the two–level case, expression (5) has the following sim-
ple interpretation. Without loss of generality c0(S(x), L) =
γS(x) = (γ0L

−χ)S(x) is written; then the sign of the
spontaneous curvature is reversed if molecular chains un-
dergo “large” conformational deformations — that is,
S(−) → S(+). A similar behaviour has been reported in
the literature [13].

3 Closed systems

3.1 Hamiltonian model

In this section critical behaviour will be studied for a sys-
tem with fixed number of constituents — closed system
[39]. In these conditions, the total area of the surface
changes by fluctuations, but the projected area is fixed
and proportional to the number of constituents.

The formation Hamiltonian is written as the sum of
a Hamiltonian density, extended to the projected area.
As stated previously, according to the hypothesis of the
model, Hform can be modelled as a spin Hamiltonian;
for two levels it is Ising-like, while, for three levels, it is
given by a spin one model (Blume-Emery-Griffit model
[19,20,40]).

With two levels, the packing contribution has the form:

Hpack = −J
∑
<I,J>

SISJ +H
∑
I

SI (6)

where explicit expressions for J and H are easily written:

J =
2V(+,−) − V(+,+) − V(−,−)

8

H =
V(−,−) − V(+,+)

4
· (7)

From the basic assumption about chain-chain interactions
it follows that coupling constant and field have fixed lin-
ear dependence on L with 1/L corrections (also quoted
in Doniach’s work [6]). Moreover, they have fixed positive
signs. Finally, the ordering field H may contain contribu-
tions from external pressure.
The Flory contribution to formation energy has been de-
fined as a function of conformational states; the peculiar-
ity of the choice made about class variables is crucial here,
since such a term can be summed over classes so that it
can be included in the external field. In order to do this
the restricted partition function Z(SI) is defined over the
set of conformational states in the class SI :∑

sI∈SI

e−βh(sI) = elnZ(SI) (8)

and the Flory contribution is written as a polynomial in
SI , with coefficients determined by lnZ(SI).
In the two–level model the Flory contribution to the Hami-
ltonian density is:

hF = −
1

2
β ln

Z(+)

Z(−)
S(x). (9)

For three levels, hF has a similar expression. Since S =
−1, 0, 1, the following relation is obtained:

hF = −
1

2β
ln
Z(+)

Z(−)
S(x) −

1

2β
ln
Z(+)Z(−)

Z(0)2
S2(x). (10)

The dependence of these contributions on the chain length
is fixed by the one-dimensional Flory description of the
single chain; more precisely, a linear dependence on L with
exponentially small corrections is predicted.
The whole formation Hamiltonian is thus characterized
by a dominantly linear dependence on L of the coupling
constant and of the external field.

The fluctuation Hamiltonian will now be considered.
As stated above, the normal gauge description of elastic
fluctuations around the background is adopted. By tak-
ing dA ' [1 + 1

2 (∇f)2 + . . . ]d2x and c(f) ' ∇2f + . . .
truncated at the second order in f [41], the following ex-
pression is obtained from equation (3):

∆Hfluct =

∫
d2x
{1

2
κ(∇2f(x))2 +

1

2
σ(∇f(x))2

− κc0(S(x))∇2f(x)
}
. (11)
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Since σ and κ are independent of classes and since the
functional ∆Hfluct depends almost only quadratically on
the variations of height profile f(x), Gaussian integration
over elastic degrees of freedom can be performed. The ef-
fective contribution is obtained

∆Heff
fluct = (−

κ

2
)

∫
d2xd2y c0(S(x))Γ (|x− y|)c0(S(y))

Γ (|x− y|) =

∫
d2q

q2

q2 + ξ2
eiq·(x−y)

= πδ(x− y) − ξ2πK0(ξ|x− y|) (12)

where K0 is a Bessel function of the third kind and ξ =√
σ/κ.
The sum of all the contributions to the Hamiltonian

density gives the effective Hamiltonian of the system. In
particular, for the two–level model

Heff = −
κγ2

2

∑
I,J

SIΓ (|I − J |)SJ −
J

2

×
∑

<I,I′>

SISI′ −
(
−H +

1

2β
ln
Z(+)

Z(−)

)∑
I

SI . (13)

A similar expression can be obtained for the three–level
model. The function co(S) has to be generalized in order to
consider three-value spin; this means including a quadratic
term in S, as happens for Flory contribution.

3.2 Results

In this section the predicted results of the present model
within the specific two–level choice are discussed. The fol-
lowing analysis, however, has a wider meaning, since it
applies to a two–level case as well as to more–level sys-
tems. The extension to the three-level case should be car-
ried out by using the phase diagram of the spin one model.
With more levels, of course, calculation becomes techni-
cally more complex.

The model Hamiltonian Heff is characterized by a cou-
pling between spins which is short–range attractive and
long–range repulsive. Such competition makes the quadra-
tic form of equation (13) not positive defined, and causes
the generation of instability at a mechanical level, associ-
ated with the existence of modulated phases (this is typi-
cal of a large class of models exhibiting patterns
[9,21,42–44]).
The occurrence of modulated phases is better understood
if the quadratic part of the effective Hamiltonian is written
in the moments space:

Heff =
∑
q

1

2

{
− κγ2 q2

q2 + ξ2
+ Jq2

}
S̃qS̃−q + · · · (14)

A modulated phase appears if the coefficient of S̃qS̃−q < 0
for some q 6= 0 [9–12]. In the present model this con-
dition gives a constraint on chain length; in fact, by in-
serting the dominant dependences of the constants on L

(J = j0L, κ(L) = κ0L
α, γ(L) = γ0), the previous condi-

tion gives:

L2α−2 >
ξ2
0j0

κ0γ0
≡ L2α−2

B . (15)

This means that, in order to observe modulated phases,
the length of the molecular chain must be greater than
the critical value LB.

The free energy of the model will now be considered.
The quadratic kernel of Heff is expanded for small mag-
netization. Near the critical point, that is, for small mo-
ments, the following expression is obtained:

F =
∑
q< 1

a

1

2

{
(J −

κ2γ2

σ
)q2 +

κ3γ2

σ2
q4

+
1

a2
(T − 4J)

}
mqm−q

+
T

12a2

∑
q1q2q3

mq1mq2mq3m−(q1+q2+q3)

−
1

a2

(
−H +

1

2β
ln
Z(+)

Z(−)

)
m0 (16)

where m is magnetization and a is the microscopic cutoff.
Equation (16) describes a Landau–Ginzburg model. When
chain length is allowed to vary, it explores sections in two
different regions of the phase diagram; reference will be
made to the Ising domain for L < LB and to the Bra-
zovskii domain for longer chains (L > LB). This result
stresses the relevant role of chain length in determining
the real phase behaviour of the system [13,22,31,45].

3.2.1 Ising domain

When L < LB, the coefficient of the term mqm−qq
2 is

positive and the free energy is reduced to an Ising model.
When defining the quantities a2(L, T ) ≡ T − 4J and

B(T,L) ≡ −H + 1
2β ln Z(+)

Z(−) , a first order transition line is

obtained for
a2 < 0; B = 0 (17)

and a critical point exists at a2 = B = 0.
In the present case, a physical line, which corresponds to a
specific system, is generated in the phase diagram by fixing
chain length. In Figure 1 each line is a path of increasing
temperature for a fixed value of L.
The first order (Ising) transition occurs from a conforma-
tionally ordered phase to a disordered one (main transi-
tion [4,6]) at the critical temperature given by the solution
of B = 0:

T ∗ =
2H

ln Z(+)
Z(−)

· (18)

Furthermore, phase transition occurs only when L is grea-
ter than a critical length L∗. In fact, since at T ∗ the con-
dition a2 < 0 must be satisfied, the following relation is
immediately written:

L∗ =
T ∗

4j0
· (19)



364 The European Physical Journal B

Fig. 1. Closed systems - Ising domain; each line represents a
system of components with fixed chain length L. Arrows indi-
cate increasing temperatures. The critical length L∗ (a2 = 0,
B = 0) selects between 1) L > L∗: systems with first order
transition between phases with uniform curvature and confor-
mational order/disorder, and 2) L < L∗: systems with no phase
transitions.

Furthermore, from equation (18) the behaviour of tran-
sition temperature with chain length is obtained: T ∗ =
T∞ + a

L + b
L2 + · · · . This result is consistent with chain

length behaviour of log Z(+)
Z(−) (linear in L with exponen-

tially small corrections) and H = h0L arctanL; the lat-
ter leading to negative corrections. The coupling J = j0L
gives, instead, equation (19). It must be stressed that sub-
dominant terms in T ∗ expansion derive essentially from
the chain length dependence of chain-chain interaction pa-
rameters.

These results are in accordance with experiments. La-
tent heat at main transition has been observed to vanish
for L below a critical value [22]; the predicted behaviour
of T ∗ with chain length can fit experimental data. For
example, observed inverse transition temperatures of PC
[6,7,46], are represented by: β∗ = β∞ + a

L
+ b

L2 where
T∞ = 400 K [7], a = 0.0015, b = 0.15.

Transitional heat and the entropy jump are also evalu-
ated. In the Ising domain, the entropoy jump is essen-
tially due to internal degrees of freedom (for uniform mag-
netization, differential operators containing elastic con-
stants are removed). The evaluation of ∆S involves the
entropy of the classes S = +1 and S = −1. The fol-

lowing relation is obtained: ∆S = kBmβ
2 ∂
∂β

[ 1
β

ln Z(+)
Z(−) ].

This means a dominantly linear dependence of ∆S on
chain length, independent of the values of the exponents
α and χ. This result agrees with experimental data by
several authors [7,46]; for instance, the entropy jumps re-
ported by Kimura et al. result from the expression ∆S =
−0.01675 + L

400 + 0.13905
L
− 1.095

L2 (kcal/mol K).

3.2.2 Brazovskii domain

When L > LB the coefficient of the term q2mqm−q in
(16) becomes negative; the free energy defines a Brazovskii
model, in which modulated phases are predicted [9,21,42,
43]. The most favoured wave vector for the modulation
can easily be calculated:

q∗ =
∣∣∣ D
2C

∣∣∣1/2 (20)

where D = J − κγ2

ξ2 and C = κγ2

ξ4 .

In order to discuss the phase diagram, the following resca-
led quantities are defined (by analogy with Leibler’s pro-

cedure [9]): h = ( 3D2

2TC )1/2B and ε = ( 2C
D2 )a2. Notice that ε

is an absolute quantity. On writing explicitly the depen-
dence of rescaled quantities on phenomenological parame-
ters and chain length (in particular, κ = κ0L

3 and γ = γ0

independent of L), the following equations are obtained:

ε(T,L) = A
[ L5

(L4
B − L

4)2

]
(T − T ∗

L

L∗
)

h(T,L) =
1

2L
ln
Z(+)

Z(−)

√
3

AT

|L4
B − L

4|

L
3
2

(T − T ∗) (21)

where:

A =
2

κ0γ
2
0a

2
· (22)

Note that T ∗ and L∗ — respectively the main transi-
tion temperature equation (18) and the associated critical
length equation (19) — are determined by phenomeno-
logical parameters appearing in formation energy and are
independent of system elasticity.
As in the Ising case, the phases available to a specific sys-
tem are determined by a line, generated by fixing the value
of L in the above expressions. The task here is to represent
the path of increasing temperature for fixed values of L
in the (ε, h) plane, where transition lines of the Brazovskii
model are drawn (see Fig. 2).
For low temperatures, both ε and h are negative and the
physical point lies in the ordered phase. Near T ∗ (weak
field), the sign of ε depends on the ratio L/L∗; we are in-
terested in the case L∗ < LB. With such a choice, physical
systems with L ' LB exhibit a first order transition be-
tween phases with uniform curvature, described either in
the Ising domain L∗ ≤ L ≤ LB, or in the Brazovskii one.
In the latter case, the parameter ε takes a very negative
value at the transition temperature T ∗ and the physical
line crosses the h = 0 line. By increasing L, this behaviour
is maintained for all the systems with L < L̄, where L̄ is
such that ε(T ∗, L̄) = −4.45 (the critical value for the ex-
istence of modulated phases in the Brazovskii model, as
discussed by Leibler and Andelmann [9]). All the physical
lines with L > L̄ cross the region of modulated phases;
then all these systems exhibit a modulated phase between
the homogeneous ones (which have uniform curvature).
This result agrees with the observation of ripple phases
disappearing for short chain lengths [13].
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Fig. 2. Closed systems - Brazovskii domain; dotted lines rep-
resent systems with L > LB > L∗ (see text). Calculation with
L∗ = 5, T ∗ = 300(K), LB = 10, A = 50; lines are reported
for 17 ≤ L ≤ 30; temperature increases as arrows show. The
adimensional quantity ε, calculated at h = 0, takes the critical
value ε̄ = −4.45 at L̄ = 24 (full line). Lines with L < L̄ cross
the h = 0 axes (order/disorder transition between phases with
uniform curvature); lines with L > L̄ cross modulated phase
region.

The value of L̄ and the width (in temperature) δ of the
existence range for the modulated phase as a function of
chain length, can be estimated from equations (21) and,
by inspection, from Figure 2; the function δ(L) is reported
in Figure 3. Both L̄ and δ depend on the values of elas-
tic constants in the calculation. Such quantities have been
evaluated by using available experimental data for bend-
ing rigidity and spontaneous curvature. Quoted values of
κ [47] range from 25kBT (bilayers in water) to 0.5kBT (mi-
croemulsions); in the present case, lower values are signif-
icant because the model is applied to monolayers. In the
calculation κ ' 1kBT was used; moreover it was assumed
that γ0a ' 1.

Consistently, L̄ ' 24 is obtained. The width δ of the
modulated phase range of existence decreases with chain
length as L−5/2 for large L (Fig. 3).

It is worth commenting on the choices made γ0a ' 1
and χ = 0.

In this case the physical curvature γphys of the surface is
inversely proportional to head size a. In particular, γphys =
γ0m, where m is the mean value of the spin. Since m ∼
10−1÷ 10−2 for temperatures of interest (see for example
the calculation by Dawson [48,49]), the physical radius of
curvature Rphys = 1

γ0m
' 10a ÷ 102a is obtained. This

value is equal to the value of the persistence length calcu-
lated for a surface with bending rigidity κ ' kBT . In fact,
the relation between persistence length ξ and the micro-
scopic cutoff a (as defined by de Gennes and Taupin e.g. in
Ref. [50]) implies ξk ' 10a÷102a. (This value is very sen-
sitive to the value of the rigidity constant; see for instance
the discussion by Taupin [51] or Sornette and Ostrowsky
in Ref. [3], Ch. 5.) Even if there is no direct relation be-

Fig. 3. Width in temperature δ of the existence range for
modulated phases as a function of chain length; cross points
from calculation of Figure 2; the behaviour with large L (full
line) is δ ∼ L−5/2.

tween radius of curvature and persistence length, their
comparison is suggested by the condition usually written
for persistence length, that is: 〈n(0) · n(ξ)〉 ≤ e−1 (n is
the normal to the surface). The same condition is, in fact,
verified if we consider the normals to a surface with mean
radius of curvature R at two sites which are a distance of
order R apart.

4 Results for open systems

In the previous section the thermodynamic behaviour of
a system in the approximation of fixed number of con-
stituents was analysed; when the exchange rate of mate-
rial between surface and reservoir is low, such a constraint
has to be removed.
In order to account for a variable number of constituents,
the formation energy is written as an integral over a vary-
ing area [39]. Even in the simplest case in which J = 0
(non–interacting tails, essentially conformational forma-
tion energy), the coupling between conformational and
elastic degrees has to be included. Such a coupling comes
from the varying area, namely from the term {h(s(x)) +

HS(x)}
√

1 + (∇f)2.
The resulting model is studied by summing over conforma-
tional variables (spin classes), and an elastic Hamiltonian
is obtained where coefficients are changed with regard to
the “bare” ones. In this way, the connection between in-
ternal degrees and curvature instability can be explicitly
shown.

The total Hamiltonian (with γ(S(x)) = γS(x) and J =
0) is written as:

Htot=
∑
x

{1

2
κc2(f)−κγc(f)S(x)+σ+h(s(x))+HS(x)

}
×
√

1 + (∇f)2 (23)
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where c(f) =
{
∇ · rf√

1+(∇f)2

}
.

By varying coefficients H and γ, two main cases, corre-
sponding to different physical systems, may be considered.

4.1 Buckling instability

The condition γ = 0 and H = 0 is assumed in equation
(23). In this case, spontaneous curvature does not depend
on conformational degrees, due to very large head size in
comparison with tail section; in such a situation lateral
pressure cannot arise.
The direct sum over conformational states is available.
Noting that:∑
s(1)

. . .
∑
s(N)

e−β
′(1)h(s(1)) . . . e−β

′(N)h(s(N)) =
∏
x

elnZ(β′(x))

(24)

where β′(x) ≡ β
√

1 + (∇f)2 and expanding the quantity
lnZ(β′) up to the fourth order in f , the effective Hamil-
tonian becomes:

Heff =
1

2
κ(∇2f)2 +

1

2
[σ −

∂ lnZ(β)

∂β
](∇f)2

+
1

8
[−σ +

∂ lnZ(β)

∂β
− β

∂2 lnZ(β)

∂β2
](∇f)4

+
κ

4
(∇2f)2(∇f)2 −

1

β
lnZ(β). (25)

A Helfrich-like Hamiltonian whose coefficients depend on
the conformational partition function is obtained. In par-
ticular, after summation, a surface tension term is found,
even if no term of such a kind was included in the bare
Hamiltonian. This result recalls the relevance of tension
in a Renormalization Group analysis [39,41,52,53].

At high temperatures, the surface is stable against rip-
ples production because surface tension is positive, inde-
pendently of the sign of σ. This is due to the dominant
contribution of internal conformational energy (−∂ lnZ

∂β
).

At low temperatures, instead, buckling instability and rip-
ples production are a consequence of choosing σ < 0.
A negative value for σ is physically meaningful for those
systems which have vanishing surface tension; this fact
has been observed in certain systems of surfactants and
amphiphilic membranes. According to Sornette and Os-
trowski [47], the origin of such a null value for the macro-
scopic observable is pointed out when a negative bare sur-
face tension is considered, which is increased by logarith-
mic corrections coming from renormalization. The same
corrections have been obtained by David and Leibler [39]
for fluctuating membranes in different regimes. Milner [37]
has shown that Langmuir monolayers with a very small –
or even negative – surface tension exhibit surface instabil-
ity when subjected to external pressure.
Regarding Hamiltonian (25), the (∇f)4–term is positive
at low temperatures for σ < 0; this guarantees the phys-
ical meaning of the truncation of the Hamiltonian at the
four-th order (independently of the sign of the (∇f)2–
term). On the contrary, with σ > 0, the (∇f)4–term is

systematically negative, thus a truncation at the four-th
order is not significant and higher–order terms must be
considered.
The chain length dependence of this kind of instability
is analogous to the one found for closed systems in the
Ising domain (Sect. 3). A critical temperature T ∗ will
exist, which distinguishes between two regimes (ripples
production and tension generation); such a temperature
will be independent of L in the zero order approximation
σ = σ0L; the subdominant terms in σ will generate 1/L
corrections to T ∗.

It is interesting that an open physical system, which
at low temperatures tends to increase its own surface and
at high temperatures generates a positive tension against
surface increase, is realized with a cellular membrane.

4.2 Curvature instability

The case with γ 6= 0 and H 6= 0 will now be considered.
Molecules whose head size is comparable with the tail sec-
tion are being dealt with; curvature is a function of con-
formational classes and, possibly, there is lateral pressure.
A more complicated scenario arises because one has to
reconsider the restricted partition functions ZSI over the
set of states belonging to the conformational classes SI .

If the relation
∑

s(x)∈S(x) e−βh(s(x))
√

1+(∇f)2
= ZS(x)(β

′)

is used and the sum over spin variables is performed, the
following expression is obtained for the total Hamiltonian
of the two–level model:

Htot =
∑
x

{
(
1

2
κc2(f) + σ)

√
1 + (∇f)2

+
[
(−κγc(f) +H)

√
1 + (∇f)2 −

1

2β
ln
Z+(β′(x))

Z−(β′(x))

]
× S(x) −

1

2β
ln[Z+(β′(x))Z−(β′(x))]

}
. (26)

By summing over classes and expanding lnZ±(β′) up to
Gaussian order in f , a Helfrich-like effective Hamiltonian
is obtained, in which the quadratic term reads:

Heff =
1

4

{
− tanh(y)

[
u̇+(β)− u̇−(β)− 2H

]
−
[
u̇+(β) + u̇−(β)

]
+ 2σ

}
(∇f)2

+
1

2

[
κ− κ2γ2β cosh−2(y)

]
(∇2f)2 + · · · (27)

where

y ≡
1

2
[u+(β)−u−(β)]− βH ; u̇±(β) ≡

∂ lnZ±
∂β

· (28)

Furthermore a linear term in the form −(γκ∇2f) tanh(y)
is obtained.
The peculiar dependence of linear and quadratic terms on
temperature allows the interpretation of two phenomena
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of great interest: shape transition and curvature instabil-
ity.

Shape transition is due to the switching of conforma-
tional degrees of freedom in the linear term of Heff . This
acts as a source of spontaneous curvature with a temper-
ature–dependent coefficient. In particular, the function y
changes sign if chains are thermally excited to states with
large transversal width. More precisely, by considering the
probabilities P+ and P− to have a free chain in the classes
(+) and (−) respectively (in presence of the external field
H), one can see that tanh(y) = P+ − P−, and the coeffi-
cient of the linear term changes sign (y = 0 ; P+ = P−) at
a temperature T ∗ which is again given formally by equa-
tion (18).
It is worth observing that this kind of instability cannot
be corrected. In the model there is no term, with the role
of a shear term, that allows us to apply the same argument
as that used by Peliti and others in order to stabilize the
flat phase [54–56]. This implies that a Renormalization
Group procedure will not destroy the effect of the source
of curvature.
For these reasons we maintain that T ∗ distinguishes be-
tween two phases with opposite curvature: a shape tran-
sition occurs.

The quadratic part of the Hamiltonian will now be
considered.
The effective rigidity coefficient can be recognized

κeff = κ
(

1− βκγ2 cosh−2 y
)

(29)

which is generally reduced, for all temperatures, with re-
spect to the “bare” quantity κ. This means that the per-
sistence length is generally reduced too (the surface is thus
more “crumpled” [50]). Such a reduction of the bending
rigidity, due to an integration over internal degrees of free-
dom, agrees with known results by Leibler [23] and other
authors (see for instance Peliti in Ref. [57]).
The minimum value of κeff is reached at T ∗, where shape
transition occurs (y = 0).
At T ∗, the sign of κeff depends on chain length; the fol-
lowing expression is obtained:

κeff

κ
= 1−

κ0γ
2
0L

α−2χ

T ∗
(30)

which is negative if

Lα−2χ >
T ∗

κ0γ
2
0

≡ L̃α−2χ. (31)

For T = T ∗ and L > L̃, the surface is highly critical,
due to contemporary occurrence of shape transition and
curvature instability.

The value of rigidity is negative for a whole region
L > L̃ and T around T ∗. This can be seen by studying
equation (29) in the (L, T ) plane. In Figure 4, the region

of negative rigidity is drawn for the case L̃ = 50; in this
calculation α = 2.5 and χ = 1 were used in the expressions
of κ and γ. The width of such region on the temperature

Fig. 4. Open systems: the region of curvature instability in the
(L
L̃
, T
T∗

) plane (T ∗ is the shape transition temperature and L̃ is
the minimum length for which such a transition occurs). With
L̃ = 50, the region reaches the maximum width D ' 0.05T ∗.

scale depends on chain length and decreases for large L as
lnL
L . The maximum width is D ' 0.05T ∗.

The role of conformational disorder in reducing the value
of κeff is clear from equation (29); in fact, roughly speak-
ing, cosh−2(y) = 1

4P+P− may be read as the probability
of finding different classes at adjacent sites.
When the system is near critical temperature T ∗, the
equality P+ = P− holds and the formation energy does not
distinguish between the classes (−) and (+). In these con-
ditions, highly disordered background surfaces prevail for
entropic reasons. As a consequence, the shape of the phys-
ical surface contains ab initio modulations at any length.
In equation (27) the effect of such a background disorder
is recognizable because, when keff < 0, the Hamiltonian
is not limited from below. Since in the same region, the
coefficient of (∇f)2 is positive (σeff > 0), any modulation

with q∗ >
√

σeff

κeff
makes the energy decrease.

This is a different kind of instability from the one generat-
ing rippled structures (modulated phases of closed systems
and buckling instability). In that case, the Hamiltonian
provides a finite characteristic length λ = 2π

q∗ , which cor-

responds to a minimal energy modulation. Here, on the
contrary, a minimal energy modulation does not exist and
it is necessary to consider quartic terms in order to get a
physically meaningful Hamiltonian. For example, the term
(∇f)2(∇2f)2 drives the surface of minimal energy towards
local curvature maximization and area minimization. This
behaviour may be identified with a phenomenon of spon-
taneous generation of curvature, which describes dramat-
ically disordered surface profiles.

Since an open system is studied, and since the quadra-
tic term of the Hamiltonian is not positive defined, the
physics of the system would be better understood with a
critical–dynamics analysis. In its work about membranes
with intercalated particles, Leibler has found an
analogous scenario: equation (27) recalls the effective
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unstable Hamiltonian studied in reference [23]. In that
case it is shown that the coupling between density fluc-
tuations and curvature modes may completely destabilize
the flat phase. As discussed by the author, the result is
very interesting, especially with regard to shape modifica-
tions of cell membranes (echinocytosis).

5 Conclusions

The flexibility of surface constituents is represented as a
process of generation of conformational defects in a poly-
mer chain; as a consequence, it is possible to prove the
existence of the main temperature T ∗, around which var-
ious configurational transitions of the system may occur.
The value of T ∗ is determined by the balance between
two terms representing the external field in the forma-
tion Hamiltonian. The first term comes from the packing
energy required to realize a given configuration of the sur-
face; the second is essentially the entropic contribution
from the multiplicity of chain conformations compatible
with each of such configurations. This result is very gen-
eral. Its formalization is simple in a two–level model and
the generalization to systems of multi–value spins is realis-
tic. In fact, for any partition into steric classes, the confor-
mational contribution to the formation Hamiltonian will
affect the external fields only.

At T ∗ temperature, the generation of conformational
disorder may jump, due to the interaction term in the
formation energy, and may compete with the existence of
extended elastic deformations (which cannot be reduced
to small fluctuations of the uniform curvature). The sys-
tem becomes critical, as happens in the main transition
or in transitions to modulated phases, or even in the pres-
ence of spontaneous generation of curvature. The length of
the flexible section of constituents controls the criticalities
of the system. This is essentially due to different scaling
laws of the chain length dependent terms appearing in the
Hamiltonian.

These results have been obtained in a minimal-coupling
picture for flexibility. In fact, interactions between chains
at different sites appear uniquely in the formation term,
while no such coupling has been imposed in the fluctua-
tion term. Moreover, only the spontaneous curvature has
been explicitly required to depend on steric classes.
If the model were extended to membranes, we think it
would be more realistic to write the spontaneous curva-
ture as a function of nearest neighbours’ conformations
(for example, facing sites in the membrane bilayer must
have spontaneous curvatures correlated). We expect the
predictivity of the model to be quite similar to the present
one.
A different situation would arise if the bending rigidity
were required to depend on conformational classes. In this
case, the summation over conformational (or over elas-
tic) degrees would generate a propagator which depends
on the elastic (conformational) field. This means that the
effective Hamiltonian would have a strong non–local na-
ture; the vertices with derivative character coming from
the propagator inversion would be of arbitrary order both

in fields and in derivatives (but with a constant canoni-
cal dimension). Therefore, in this case, the extension of
the model would require a perturbative analysis in the κ
parameter for an adequate description.
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